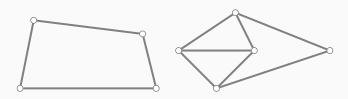
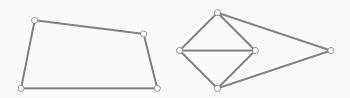
Flexible and Rigid Labelings of Graphs

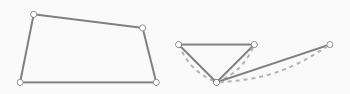
Jan Legerský

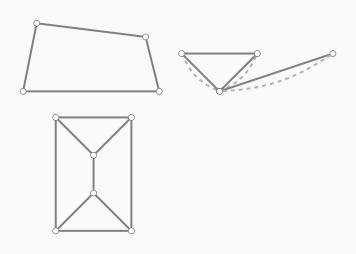
RISC JKU Linz, Austria

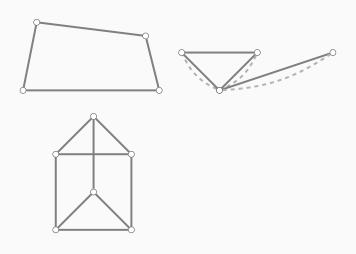
Doctoral thesis defense July 2, 2019

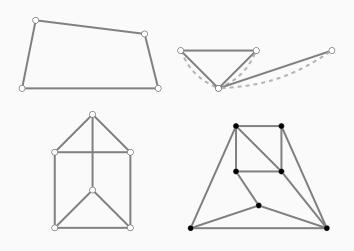












Existence of Flexible Labelings

• Movable Graphs

• On the Classification of Motions

• Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
 - ▷ G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings. Discrete & Computational Geometry, 2018.
- Movable Graphs

On the Classification of Motions

Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
 - ▷ G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings. Discrete & Computational Geometry, 2018.
- Movable Graphs
 - ▷ G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings allowing Injective Realizations, arXiv, 2018.
- On the Classification of Motions

Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
- Movable Graphs
 - ▷ G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings allowing Injective Realizations, arXiv, 2018.
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling

Existence of Flexible Labelings

▷ G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings. Discrete & Computational Geometry, 2018.

Movable Graphs

▷ G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings allowing Injective Realizations, arXiv, 2018.

On the Classification of Motions

Number of Real Realizations compatible with a Rigid Labeling

- E. Bartzos, I. Z. Emiris, J. Legerský, and E. Tsigaridas. On the Maximal Number of Real Embeddings of Spatial Minimally Rigid Graphs. ISSAC 2018.
- \triangleright E. Bartzos, I. Z. Emiris, J. Legerský, and E. Tsigaridas. On the maximal number of real embeddings of minimally rigid graphs in \mathbb{R}^2 , \mathbb{R}^3 and S^2 , arXiv, 2018.

Flexible and rigid labelings

Let $\lambda: E_G \to \mathbb{R}_+$ be an edge labeling of a graph $G = (V_G, E_G)$. A realization $\rho: V_G \to \mathbb{R}^2$ is compatible with λ if $\|\rho(u) - \rho(v)\| = \lambda(uv)$ for all edges uv in E_G .

Flexible and rigid labelings

Let $\lambda: E_G \to \mathbb{R}_+$ be an edge labeling of a graph $G = (V_G, E_G)$. A realization $\rho: V_G \to \mathbb{R}^2$ is compatible with λ if $\|\rho(u) - \rho(v)\| = \lambda(uv)$ for all edges uv in E_G .

The labeling λ is called

- flexible if there are infinitely many non-congruent compatible realizations, or
- *rigid* if the number of non-congruent compatible realizations is positive and finite.

Flexible and rigid labelings

Let $\lambda: E_G \to \mathbb{R}_+$ be an edge labeling of a graph $G = (V_G, E_G)$. A realization $\rho: V_G \to \mathbb{R}^2$ is compatible with λ if $\|\rho(u) - \rho(v)\| = \lambda(uv)$ for all edges uv in E_G .

The labeling λ is called

- proper flexible if there are infinitely many non-congruent injective compatible realizations, or
- *rigid* if the number of non-congruent compatible realizations is positive and finite.

A graph is called movable if it has a proper flexible labeling.

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$

$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$

$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$

$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$

$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

ullet only isolated solutions $\Longrightarrow \lambda$ is rigid,

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$

$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$

$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

- ullet only isolated solutions $\implies \lambda$ is rigid,
- ullet infinitely many solutions $\Longrightarrow \lambda$ is flexible,

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$
$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$
$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

- ullet only isolated solutions $\Longrightarrow \lambda$ is rigid,
- ullet infinitely many solutions $\Longrightarrow \lambda$ is flexible,
- infinitely many solutions such that

$$(x_u - x_v)^2 + (y_u - y_v)^2 \neq 0, \quad \forall uv \notin E$$

 $\implies \lambda$ is proper flexible,

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$

$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$

$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

- ullet only isolated solutions $\Longrightarrow \lambda$ is rigid,
- ullet infinitely many solutions $\Longrightarrow \lambda$ is flexible,
- infinitely many solutions such that

$$(x_u - x_v)^2 + (y_u - y_v)^2 \neq 0, \quad \forall uv \notin E$$

 $\implies \lambda$ is proper flexible,

A 1-dimensional irreducible subset of the zero set is called an *algebraic motion*.

Laman graphs

Definition

A graph G is called Laman if $|E_G|=2|V_G|-3$, and $|E_H|\leq 2|V_H|-3$ for every subgraph H of G.

Theorem (Pollaczek-Geiringer, Laman)

A labeling of a graph G induced by a generic realization of G is rigid if and only if G is spanned by a Laman graph.

5

Laman graphs

Definition

A graph G is called Laman if $|E_G|=2|V_G|-3$, and $|E_H|\leq 2|V_H|-3$ for every subgraph H of G.

Theorem (Pollaczek-Geiringer, Laman)

A labeling of a graph G induced by a generic realization of G is rigid if and only if G is spanned by a Laman graph.

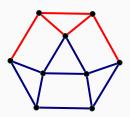
Are there any Laman graphs with a (proper) flexible labeling?

Existence of Flexible Labelings

NAC-colorings

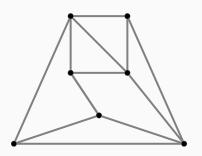
Definition

A coloring of edges $\delta: E_G \to \{\text{blue, red}\}\$ is called a *NAC-coloring*, if it is surjective and for every cycle in G, either all edges in the cycle have the same color, or there are at least two blue and two red edges in the cycle.

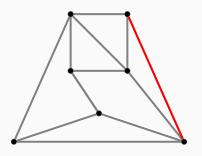


Theorem (GLS)

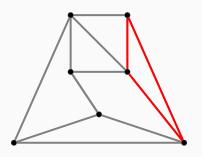
Theorem (GLS)



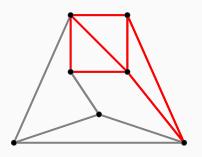
Theorem (GLS)



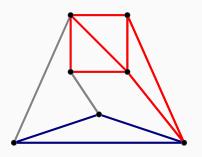
Theorem (GLS)



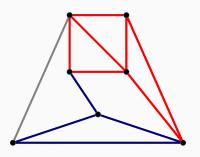
Theorem (GLS)



Theorem (GLS)

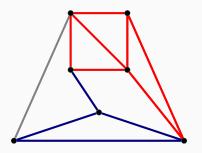


Theorem (GLS)



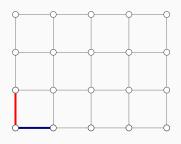
Theorem (GLS)

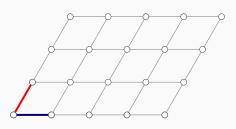
A connected graph with at least one edge has a flexible labeling if and only if it has a NAC-coloring.



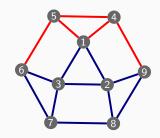
 \implies no flexible labeling

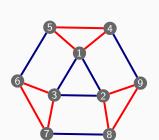
Grid construction

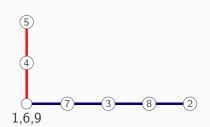


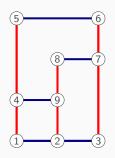


Example

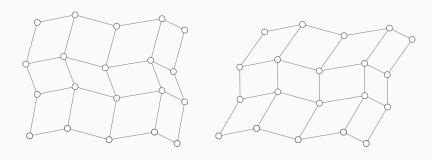




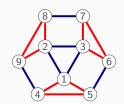




Grid construction II



Example II



$$\lambda_{uv}^{2} = (x_{v} - x_{u})^{2} + (y_{v} - y_{u})^{2}$$

$$= \underbrace{((x_{v} - x_{u}) + i(y_{v} - y_{u}))}_{W_{u,v}} \underbrace{((x_{v} - x_{u}) - i(y_{v} - y_{u}))}_{Z_{u,v}}$$

$$\lambda_{uv}^{2} = (x_{v} - x_{u})^{2} + (y_{v} - y_{u})^{2}$$

$$= \underbrace{((x_{v} - x_{u}) + i(y_{v} - y_{u}))}_{W_{u,v}} \underbrace{((x_{v} - x_{u}) - i(y_{v} - y_{u}))}_{Z_{u,v}}$$

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0$$
 and $\sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0$

$$\lambda_{uv}^{2} = (x_{v} - x_{u})^{2} + (y_{v} - y_{u})^{2}$$

$$= \underbrace{((x_{v} - x_{u}) + i(y_{v} - y_{u}))}_{W_{u,v}} \underbrace{((x_{v} - x_{u}) - i(y_{v} - y_{u}))}_{Z_{u,v}}$$

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0$$

$$\bullet \qquad \qquad \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2)$$

$$\lambda_{uv}^{2} = (x_{v} - x_{u})^{2} + (y_{v} - y_{u})^{2}$$

$$= \underbrace{((x_{v} - x_{u}) + i(y_{v} - y_{u}))}_{W_{u,v}} \underbrace{((x_{v} - x_{u}) - i(y_{v} - y_{u}))}_{Z_{u,v}}$$

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0$$

$$\bullet \qquad \qquad \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$$

$$\lambda_{uv}^{2} = (x_{v} - x_{u})^{2} + (y_{v} - y_{u})^{2}$$

$$= \underbrace{((x_{v} - x_{u}) + i(y_{v} - y_{u}))}_{W_{u,v}} \underbrace{((x_{v} - x_{u}) - i(y_{v} - y_{u}))}_{Z_{u,v}}$$

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0$$

•
$$\nu(W_{u,v}) + \nu(Z_{u,v}) = \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$$

$$\lambda_{uv}^{2} = (x_{v} - x_{u})^{2} + (y_{v} - y_{u})^{2}$$

$$= \underbrace{((x_{v} - x_{u}) + i(y_{v} - y_{u}))}_{W_{u,v}} \underbrace{((x_{v} - x_{u}) - i(y_{v} - y_{u}))}_{Z_{u,v}}$$

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0$$

•
$$\nu(W_{u,v}) + \nu(Z_{u,v}) = \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$$
, and

$$\bullet$$
 $W_{u_1,u_n} = \sum_{i=1}^{n-1} W_{u_i,u_{i+1}}$

$$\lambda_{uv}^{2} = (x_{v} - x_{u})^{2} + (y_{v} - y_{u})^{2}$$

$$= \underbrace{((x_{v} - x_{u}) + i(y_{v} - y_{u}))}_{W_{u,v}} \underbrace{((x_{v} - x_{u}) - i(y_{v} - y_{u}))}_{Z_{u,v}}$$

For every cycle $(u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{i=1}^{n} W_{u_i,u_{i+1}} = 0 \quad \text{and} \quad \sum_{i=1}^{n} Z_{u_i,u_{i+1}} = 0$$

- $\nu(W_{u,v}) + \nu(Z_{u,v}) = \nu(W_{u,v}Z_{u,v}) = \nu(\lambda_{uv}^2) = 0$, and
- $\nu(W_{u_1,u_n}) = \nu(\sum_{i=1}^{n-1} W_{u_i,u_{i+1}}) \ge \min_{i \in \{1,\dots,n-1\}} \nu(W_{u_i,u_{i+1}})$.

Active NAC-colorings

Lemma (GLS)

Let $\mathcal C$ be an algebraic motion of (G,λ) . If $\alpha\in\mathbb Q$ and ν is a valuation of $F(\mathcal C)$ trivial on $\mathbb C$ such that there exist edges $\bar u \bar v, \hat u \hat v$ with $\nu(W_{\bar u,\bar v})=\alpha$ and $\nu(W_{\hat u,\hat v})>\alpha$, then $\delta:E_G\to\{\text{red},\text{blue}\}$ given by

$$\delta(uv) = red \iff \nu(W_{u,v}) > \alpha,$$

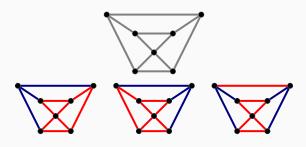
$$\delta(uv) = blue \iff \nu(W_{u,v}) \le \alpha.$$

is a NAC-coloring, called active.

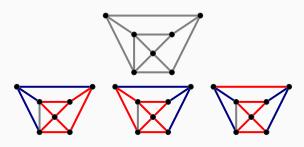
Movable Graphs

Lemma (GLS)

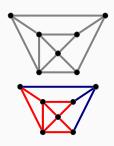
Lemma (GLS)



Lemma (GLS)

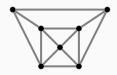


Lemma (GLS)



Lemma (GLS)

Let G be a graph and $u, v \in V_G$ be such that $uv \notin E_G$. If there exists a uv-path P in G such that P is unicolor for all NAC-colorings of G, then G is movable if and only if $G' = (V_G, E_G \cup \{uv\})$ is movable.

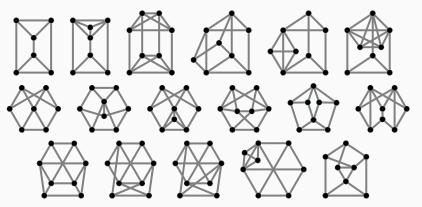


⇒ constant distance closure

Movable graphs up to 8 vertices

Theorem (GLS)

The maximal movable graphs with at most 8 vertices that are spanned by a Laman graph and have no vertex of degree two are the following: $K_{3,3}$, $K_{3,4}$, $K_{3,5}$, $K_{4,4}$ or



Embedding in \mathbb{R}^3

Lemma (GLS)

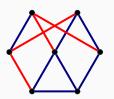
If there exists an injective realization of G in \mathbb{R}^3 such that every edge is parallel to one of the four vectors (1,0,0),(0,1,0),(0,0,1),(-1,-1,-1), then G is movable.

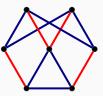
Embedding in \mathbb{R}^3

Lemma (GLS)

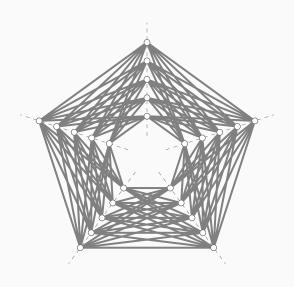
If there exists an injective realization of G in \mathbb{R}^3 such that every edge is parallel to one of the four vectors (1,0,0),(0,1,0),(0,0,1),(-1,-1,-1), then G is movable.

Moreover, there exists an algebraic motion of G with exactly two active NAC-colorings. Two edges are parallel in the embedding ω if and only if they receive the same pair of colors in the two active NAC-colorings.



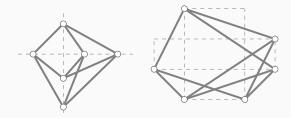


Counterexample



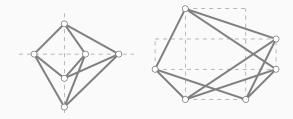
On the Classification of Motions

Classification of motions



Dixon (1899), Walter and Husty (2007)

Classification of motions



Dixon (1899), Walter and Husty (2007)

Active NAC-colorings of quadrilaterals

Quadrilateral	Motion	Active NAC-colorings
Rhombus	parallel	
	degenerate	resp.
Parallelogram		
Antiparallelogram		
Deltoid	nondegenerate	
	degenerate	
General		

Active NAC-colorings of quadrilaterals

Quadrilateral	Motion	Active NAC-colorings
Rhombus	parallel	
	degenerate	resp.
Parallelogram		
Antiparallelogram		
Deltoid	nondegenerate	
	degenerate	
General		

Leading coefficient system

Assume a valuation that gives only one active NAC-coloring \implies Laurent series parametrization.

For every cycle $C = (u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{\substack{i \in \{1, \dots, n\} \\ \delta(u_i u_{i+1}) = \text{red}}} \underbrace{(\underbrace{w_{u_i u_{i+1}} t + \text{h.o.t.}}_{W_{u_i, u_{i+1}}}) \ + \sum_{\substack{i \in \{1, \dots, n\} \\ \delta(u_i u_{i+1}) = \text{blue}}} \underbrace{(\underbrace{w_{u_i u_{i+1}} + \text{h.o.t.}}_{W_{u_i, u_{i+1}}}) = 0 \ .$$

Leading coefficient system

Assume a valuation that gives only one active NAC-coloring \implies Laurent series parametrization.

For every cycle $C = (u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{\substack{i \in \{1,\dots,n\}\\ \delta(u_iu_{i+1}) = \mathsf{blue}}} w_{u_iu_{i+1}} \qquad \qquad = 0 \ .$$

Leading coefficient system

Assume a valuation that gives only one active NAC-coloring \implies Laurent series parametrization.

For every cycle $C = (u_1, \ldots, u_n, u_{n+1} = u_1)$:

$$\sum_{\substack{i\in\{1,\dots,n\}\\\delta(u_iu_{i+1})=\mathsf{blue}}} w_{u_iu_{i+1}} \qquad \qquad =0\,.$$

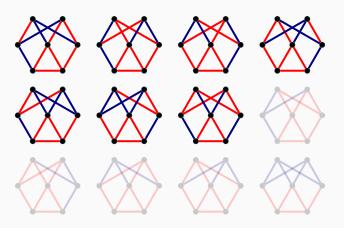
For all $uv \in E_G$:

$$w_{uv}z_{uv}=\lambda_{uv}^2$$
.

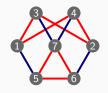
 \implies elimination using Gröbner basis provides an equation in $\lambda_{\it uv}$'s.

Singleton NAC-colorings

If a valuation yields two active NAC-colorings δ, δ' , then the set $\{(\delta(e), \delta'(e)) \colon e \in E_G\}$ has 3 elements.



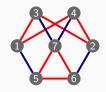
Triangle in Q1



$$\implies \lambda_{57}^2 r^2 + \lambda_{67}^2 s^2 + \left(\lambda_{56}^2 - \lambda_{57}^2 - \lambda_{67}^2\right) rs = 0,$$

$$r = \lambda_{24}^2 - \lambda_{23}^2, \ s = \lambda_{14}^2 - \lambda_{13}^2$$

Triangle in Q1

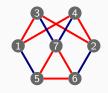


$$\implies \lambda_{57}^2 r^2 + \lambda_{67}^2 s^2 + (\lambda_{56}^2 - \lambda_{57}^2 - \lambda_{67}^2) r s = 0,$$
$$r = \lambda_{24}^2 - \lambda_{23}^2, \ s = \lambda_{14}^2 - \lambda_{13}^2$$

Considering the equation as a polynomial in r, the discriminant is

$$(\lambda_{56}+\lambda_{57}+\lambda_{67})(\lambda_{56}+\lambda_{57}-\lambda_{67})(\lambda_{56}-\lambda_{57}+\lambda_{67})(\lambda_{56}-\lambda_{57}-\lambda_{67})s^2$$
.

Triangle in Q1



$$\implies \lambda_{57}^2 r^2 + \lambda_{67}^2 s^2 + (\lambda_{56}^2 - \lambda_{57}^2 - \lambda_{67}^2) r s = 0,$$
$$r = \lambda_{24}^2 - \lambda_{23}^2, \ s = \lambda_{14}^2 - \lambda_{13}^2$$

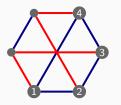
Considering the equation as a polynomial in r, the discriminant is

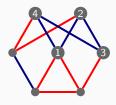
$$(\lambda_{56} + \lambda_{57} + \lambda_{67})(\lambda_{56} + \lambda_{57} - \lambda_{67})(\lambda_{56} - \lambda_{57} + \lambda_{67})(\lambda_{56} - \lambda_{57} - \lambda_{67})s^2$$
.

Theorem (GLS)

The vertices 5, 6 and 7 are collinear for every proper flexible labeling of Q_1 .

Orthogonal diagonals





Lemma (GLS)

If there is an active NAC-coloring δ of an algebraic motion of (G,λ) such that a 4-cycle (1,2,3,4) is blue and there are red paths from 1 to 3 and from 2 to 4, then

$$\lambda_{12}^2 + \lambda_{34}^2 = \lambda_{23}^2 + \lambda_{14}^2 \,,$$

namely, the 4-cycle (1,2,3,4) has orthogonal diagonals.

Ramification formula

Theorem (GLS)

Let $\mathcal C$ be an algebraic motion of (G,λ) with the set of active NAC-colorings N. There exist $\mu_\delta \in \mathbb Z_{\geq 0}$ for all NAC-colorings δ of G such that:

- 1. $\mu_{\delta} \neq 0$ if and only if $\delta \in N$, and
- 2. for every 4-cycle (V_i, E_i) of G, there exists a positive integer d_i such that

$$\sum_{\substack{\delta \in \mathsf{NAC}_G \\ \delta \mid_{E_i} = \, \delta'}} \mu_\delta = \mathsf{d}_i \qquad \text{for all } \delta' \in \{\delta \mid_{E_i} \colon \delta \in \mathsf{N}\} \,.$$

Ramification formula

Theorem (GLS)

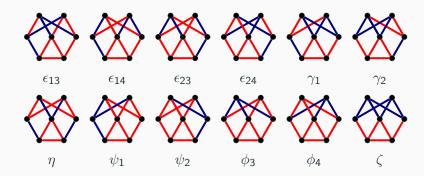
Let $\mathcal C$ be an algebraic motion of (G,λ) with the set of active NAC-colorings N. There exist $\mu_\delta \in \mathbb Z_{\geq 0}$ for all NAC-colorings δ of G such that:

- 1. $\mu_{\delta} \neq 0$ if and only if $\delta \in N$, and
- 2. for every 4-cycle (V_i, E_i) of G, there exists a positive integer d_i such that

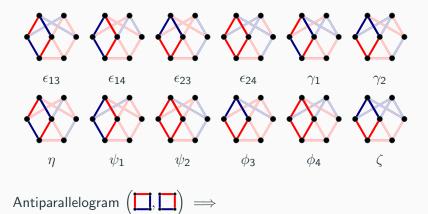
$$\sum_{\substack{\delta \in \mathsf{NAC}_G \\ \delta \mid_{E_i} = \delta'}} \mu_{\delta} = \mathsf{d}_i \qquad \textit{for all } \delta' \in \{\delta \mid_{E_i} \colon \delta \in \mathsf{N}\} \,.$$

$$\begin{split} \mathfrak{p} &= \left\{ \square \right\}, & \qquad \mathfrak{o} &= \left\{ \square, \square \right\}, & \qquad \mathfrak{g} &= \left\{ \square, \square, \square \right\}, \\ \mathfrak{a} &= \left\{ \square, \square \right\}, & \qquad \mathfrak{e} &= \left\{ \square, \square \right\}. \end{split}$$

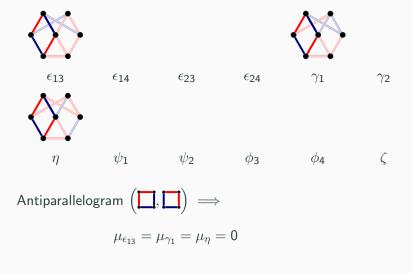
Example



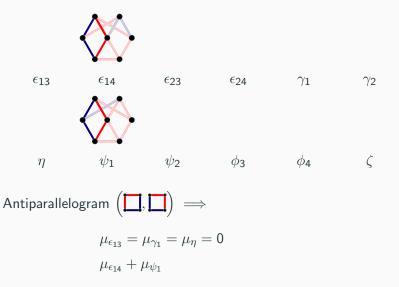
Example



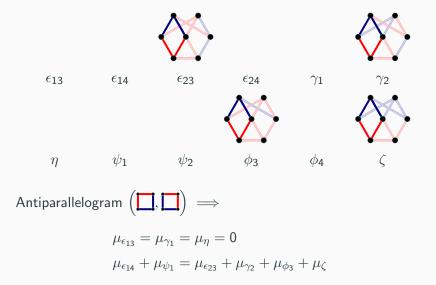
Example



Example



Example



 \bullet Find all possible types of motions of quadrilaterals with consistent μ_{δ} 's

- ullet Find all possible types of motions of quadrilaterals with consistent μ_δ 's
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)

- ullet Find all possible types of motions of quadrilaterals with consistent μ_δ 's
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases

- ullet Find all possible types of motions of quadrilaterals with consistent μ_{δ} 's
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases
- Compute necessary conditions for λ_{uv} 's using leading coefficient systems

- ullet Find all possible types of motions of quadrilaterals with consistent μ_{δ} 's
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases
- Compute necessary conditions for λ_{uv} 's using leading coefficient systems
- Check if there is a proper flexible labeling satisfying the necessary conditions

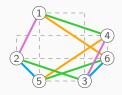
- ullet Find all possible types of motions of quadrilaterals with consistent μ_{δ} 's
- Remove combinations with coinciding vertices (due to edge lengths, perpendicular diagonals)
- Identify symmetric cases
- Compute necessary conditions for λ_{uv} 's using leading coefficient systems
- Check if there is a proper flexible labeling satisfying the necessary conditions

Implementation - SageMath package FlexRiLoG
(https://github.com/Legersky/flexrilog)

Classification of motions of $K_{3,3}$



4-cycles	active NAC-colorings	#	
ggggggggg	$NAC_{\mathcal{K}_{3,3}}$	1	
ooogggggg	$\{\epsilon_{12}, \epsilon_{23}, \epsilon_{34}, \epsilon_{14}, \epsilon_{16}, \epsilon_{36}, \omega_1, \omega_3\}$	6	Dixon I
pooggogge	$\{\epsilon_{12},\epsilon_{23},\epsilon_{34},\epsilon_{14}\}$	9	
pagaagaag	$\{\epsilon_{12},\epsilon_{34},\omega_5,\omega_6\}$	18	Dixon II



Classification of motions of Q_1

4-cycles	active NAC-colorings	#	type	dim.
pggpgpg	$\{\epsilon_{13},\epsilon_{24},\eta\}$	2	I	4
poapope	$\{\epsilon_{ extsf{13}},\eta\}$	4	\subset I, IV $_{-}$, V, VI	2
peepapa	$\{\epsilon_{13},\epsilon_{24}\}$	2	\subset I, II, III	2
ogggggg	$\{\epsilon_{ij},\gamma_1,\gamma_2,\psi_1,\psi_2\}$	1	$II \cup II_+$	5
peegggg	$\{\epsilon_{13},\epsilon_{14},\epsilon_{23},\epsilon_{24}\}$	1	$\subset II_{-}, II_{+}$	4
oggpgga	$\{\epsilon_{13},\epsilon_{24},\gamma_1,\psi_2\}$	4	$\subset II$	3
oggegge	$\{\epsilon_{13},\epsilon_{23},\gamma_1,\gamma_2\}$	2	$\subset II$, deg.	2
ogggaga	$\{\epsilon_{13},\epsilon_{24},\psi_1,\psi_2,\zeta\}$	2	III	3
ggapggg	$\{\epsilon_{13},\eta,\phi_{4},\psi_{2}\}$	4	$IV \cup IV_+$	4
ggaegpe	$\{\epsilon_{13},\eta,\gamma_2,\phi_3\}$	4	V	3
pggegge	$\{\epsilon_{13},\epsilon_{23},\eta,\zeta\}$	2	VI	3

Number of Real Realizations

compatible with a Rigid Labeling

Number of real realizations

How many realizations of a Laman graph are compatible with a given rigid labeling?

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$

$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$

$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

Number of real realizations

How many realizations of a Laman graph are compatible with a given rigid labeling?

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$

$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$

$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

⇒ Bounded by the number of the complex solutions.

Number of real realizations

How many realizations of a Laman graph are compatible with a given rigid labeling?

$$(x_{\bar{u}}, y_{\bar{u}}) = (0, 0)$$

$$(x_{\bar{v}}, y_{\bar{v}}) = (\lambda(\bar{u}\bar{v}), 0)$$

$$(x_u - x_v)^2 + (y_u - y_v)^2 = \lambda(uv)^2, \quad \forall uv \in E_G$$

 \implies Bounded by the number of the complex solutions.

Goal — specify edge lengths with many real solutions.

Laman graphs with many real realizations

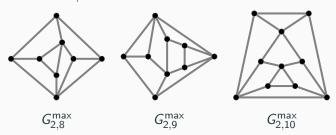
- 6 vertices: Borcea and Streinu '04
- 7 vertices: Emiris and Moroz '11
- Capco, Gallet, Grasegger, Koutschan, Lubbes and Schicho '18

# vertices	6	7	8	9	10	11	12
minimum	16	32	64	128	256	512	1024
maximum (\mathbb{C})	24	56	136	344	880	2288	6180
maximum (\mathbb{R})	24	56					

Laman graphs with many real realizations

- 6 vertices: Borcea and Streinu '04
- 7 vertices: Emiris and Moroz '11
- Capco, Gallet, Grasegger, Koutschan, Lubbes and Schicho '18

# vertices	6	7	8	9	10	11	12
minimum	16	32	64	128	256	512	1024
maximum (\mathbb{C})	24	56	136	344	880	2288	6180
maximum (\mathbb{R})	24	56	136	344	≥ 860	_	_



3D – Geiringer graphs

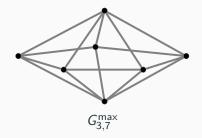
- 6 vertices: Emiris, Tsigaridas and Varvitsiotis '13
- Grasegger, Koutschan, Tsigaridas '18

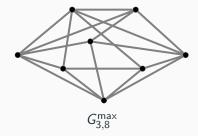
# vertices	6	7	8	9	10
minimum (\mathbb{C})	8	16	24	48	76
$maximum\ (\mathbb{C})$	16	48	160	640	2560
$maximum\;(\mathbb{R})$					

3D – Geiringer graphs

- 6 vertices: Emiris, Tsigaridas and Varvitsiotis '13
- Grasegger, Koutschan, Tsigaridas '18

# vertices	6	7	8	9	10
minimum (\mathbb{C})	8	16	24	48	76
maximum (\mathbb{C})	16	48	160	640	2560
maximum (\mathbb{R})	16	48	≥ 132	_	_

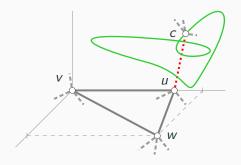




Coupler Curves

Removing an edge uc yields a flexible structure.

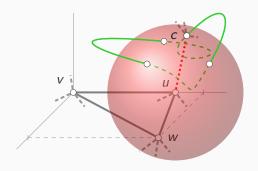
The curve traced by the vertex c is called a *coupler curve*.



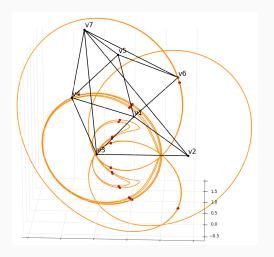
Coupler Curves

Removing an edge uc yields a flexible structure.

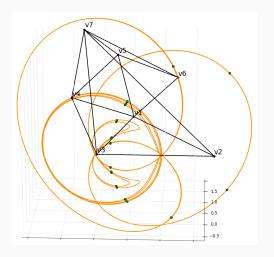
The curve traced by the vertex c is called a *coupler curve*.



Example



Example



Summary

Existence of Flexible Labelings

- Movable Graphs
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
 - ▷ NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings
- Movable Graphs
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
 - ▷ NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings
- Movable Graphs
 - ▶ Necessary and sufficient condition
- On the Classification of Motions
- Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
 - ▷ NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings
- Movable Graphs
- On the Classification of Motions
 - \triangleright Other graphs than Q_1
- Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
 - ▷ NAC-colorings of Laman graphs
 - NAC-colorings yielding proper flexible labelings
- Movable Graphs
 - Necessary and sufficient condition
- On the Classification of Motions
 - \triangleright Other graphs than Q_1
- Number of Real Realizations compatible with a Rigid Labeling

- Existence of Flexible Labelings
 - ▷ NAC-colorings of Laman graphs
 - ▷ NAC-colorings yielding proper flexible labelings
- Movable Graphs
 - Necessary and sufficient condition
- On the Classification of Motions
 - \triangleright Other graphs than Q_1
- Number of Real Realizations compatible with a Rigid Labeling
- Realizations on the Sphere
 - \triangleright NAP-colorings, classification of motions of $K_{3,3}$

Thank you

jan.legersky@risc.jku.at jan.legersky.cz